Exercise 4

(a) Use the change of variables $\alpha=x+c t, \beta=x-c t$ to transform the wave equation (1) into $\frac{\partial^{2} u}{\partial \alpha \partial \beta}=0$. (You should assume that $\frac{\partial^{2} u}{\partial \alpha \partial \beta}=\frac{\partial^{2} u}{\partial \beta \partial \alpha}$.)
(b) Integrate the equation with respect to α to obtain $\frac{\partial u}{\partial \beta}=g(\beta)$, where g is an arbitrary function.
(c) Integrate with respect to β to arrive at $u=F(\alpha)+G(\beta)$, where F is an arbitrary function and G is an antiderivative of g.
(d) Derive the solution given in Exercise 3.

Solution

The aim is to solve the wave equation on the whole line for all time.

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x<\infty,-\infty<t<\infty
$$

Bring both terms to the left side.

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}}=0
$$

Comparing this to the general form of a second-order PDE,
$A u_{t t}+B u_{x t}+C u_{x x}+D u_{t}+E u_{x}+f u=g$, we see that $A=1, B=0, C=-c^{2}, D=0, E=0$, $f=0$, and $g=0$. The characteristic curves for this second-order PDE satisfy

$$
\begin{aligned}
\frac{d x}{d t} & =\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 A} \\
& =\frac{ \pm \sqrt{-4(1)\left(-c^{2}\right)}}{2(1)} \\
& = \pm c .
\end{aligned}
$$

The two families of real characteristic curves are

$$
x=c t+C_{1} \quad \text { and } \quad x=-c t+C_{2} .
$$

The constants of integration are essentially the names of the family members.

$$
\begin{aligned}
& C_{1}=x-c t \\
& C_{2}=x+c t
\end{aligned}
$$

The wave equation can be simplified tremendously by making the change of variables, $\alpha=x+c t$ and $\beta=x-c t$. Use the chain rule to write the derivatives in terms of these new variables.

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\frac{\partial u}{\partial \alpha} \frac{\partial \alpha}{\partial t}+\frac{\partial u}{\partial \beta} \frac{\partial \beta}{\partial t}=\frac{\partial u}{\partial \alpha}(c)+\frac{\partial u}{\partial \beta}(-c)=c \frac{\partial u}{\partial \alpha}-c \frac{\partial u}{\partial \beta} \\
\frac{\partial^{2} u}{\partial t^{2}} & =\frac{\partial}{\partial t}\left(\frac{\partial u}{\partial t}\right)=\left(\frac{\partial \alpha}{\partial t} \frac{\partial}{\partial \alpha}+\frac{\partial \beta}{\partial t} \frac{\partial}{\partial \beta}\right)\left(\frac{\partial u}{\partial t}\right)=\left(c \frac{\partial}{\partial \alpha}-c \frac{\partial}{\partial \beta}\right)\left(c \frac{\partial u}{\partial \alpha}-c \frac{\partial u}{\partial \beta}\right)=c^{2} \frac{\partial^{2} u}{\partial \alpha^{2}}-2 c^{2} \frac{\partial^{2} u}{\partial \alpha \partial \beta}+c^{2} \frac{\partial^{2} u}{\partial \beta^{2}} \\
\frac{\partial u}{\partial x} & =\frac{\partial u}{\partial \alpha} \frac{\partial \alpha}{\partial x}+\frac{\partial u}{\partial \beta} \frac{\partial \beta}{\partial x}=\frac{\partial u}{\partial \alpha}(1)+\frac{\partial u}{\partial \beta}(1)=\frac{\partial u}{\partial \alpha}+\frac{\partial u}{\partial \beta} \\
\frac{\partial^{2} u}{\partial x^{2}} & =\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)=\left(\frac{\partial \alpha}{\partial x} \frac{\partial}{\partial \alpha}+\frac{\partial \beta}{\partial x} \frac{\partial}{\partial \beta}\right)\left(\frac{\partial u}{\partial x}\right)=\left(\frac{\partial}{\partial \alpha}+\frac{\partial}{\partial \beta}\right)\left(\frac{\partial u}{\partial \alpha}+\frac{\partial u}{\partial \beta}\right)=\frac{\partial^{2} u}{\partial \alpha^{2}}+2 \frac{\partial^{2} u}{\partial \alpha \partial \beta}+\frac{\partial^{2} u}{\partial \beta^{2}}
\end{aligned}
$$

Substitute these formula into the wave equation.

$$
\begin{aligned}
0 & =\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \frac{\partial^{2} u}{\partial x^{2}} \\
& =\left(c^{2} \frac{\partial^{2} u}{\partial \alpha^{2}}-2 c^{2} \frac{\partial^{2} u}{\partial \alpha \partial \beta}+c^{2} \frac{\partial^{2} u}{\partial \beta^{2}}\right)-c^{2}\left(\frac{\partial^{2} u}{\partial \alpha^{2}}+2 \frac{\partial^{2} u}{\partial \alpha \partial \beta}+\frac{\partial^{2} u}{\partial \beta^{2}}\right) \\
& =-4 c^{2} \frac{\partial^{2} u}{\partial \alpha \partial \beta}
\end{aligned}
$$

Divide both sides by $-4 c^{2}$.

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial \alpha \partial \beta}=0 \\
\frac{\partial}{\partial \alpha}\left(\frac{\partial u}{\partial \beta}\right)=0
\end{gathered}
$$

Solving for u is now very straightforward. Integrate both sides partially with respect to α.

$$
\frac{\partial u}{\partial \beta}=g(\beta)
$$

Here g is an arbitrary function. Integrate both sides partially with respect to β.

$$
u(\alpha, \beta)=\int^{\beta} g(s) d s+F(\alpha)=G(\beta)+F(\alpha)
$$

Now that u is known, change back to the original variables.

$$
u(x, t)=G(x-c t)+F(x+c t)
$$

